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Abstract---An accurate and efficient time domain BEM for the 2D elastodynamic wave transient
analysis method is presented. Emphasis is focused on developing time domain fundamental con­
voluted kernels and methodology for quadratic temporal solution procedures which have never
been presented before. In the presented BEM method, called the QC method, the temporal variations
of displacement and traction are assumed to be quadratic and constant, respectively.

The spatial variations of displacement and traction fields are assumed to be quadratic. Also,
the LC method, assuming linear temporal variation of displacement field and constant temporal
variation of traction field. is examined in the paper. For the verification of the QC method.
rectangular bars subject to different end loads are studied. The numerical results by the QC method
are compared with analytical solutions and those by the LC method. Numerical study reveals that
the QC method is more accurate and stable. In the QC method, a good numerical result can still be
obtained even when fJ = 1.0-2.0. However fJ = 0.50-0.75 should be used in the LC method in order
to obtain good numerical results. This would provide evidence that the QC method has great
advantages over the LC method. Some conclusions regarding the QC method are also made.
Copyright 1996 Elsevier Science Ltd

1. INTRODUCTION

In recent years, the Boundary Element Method (BEM) has become increasingly popular
for the solution of linear elastodynamic problems (Banerjee, 1994). Its popularity can be
attributed primarily to the reduction of dimensionality of the problems, high accuracy of
results and automatic consideration of the radiation conditions at infinity (Brebbia et al.,
1984).

In the early 1980s, Niwa et al. (\ 980) solved two-dimensional problems using three­
dimensional transient kernels with the third spatial coordinate playing a role of time related
variable. But Mansur (1983) was the first to formulate a time-stepping algorithm using
2D time-domain elasto-dynamic kernels. Later, Antes (1985) also employed a similar
formulation. However, the accuracy of their formulation suffers from the following prob­
lems as indicated by Israil and Banerjee (\990b): mathematical complexity resulting from
the treatment of Heaviside functions in the kernel functions, simplified assumptions of
constant variation of spatial variables, modelling of boundary geometry by using straight
line segments, and inadequate treatment of edges and corners, etc. These formulations are
also called the first-generation direct time-domain BEM formulation for 2D transient
dynamics (lsrail and Banerjee, 1990b). Following this, integral equation solutions of ela­
stodynamic problems in time domains have also been presented by the weighted residual
method and the reciprocity method in 2D BEM formulations. Spyrakos and Antes (1986)
have found that, for problems with short durations, the reciprocity method (same as Israil
and Banerjee, 1990a) takes considerably less calculation time than that by the weighted
residual method for elastodynamic transient problems. Recently, Israil and Banerjee
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(l990a; 1990b; 1991) have made certain contributions to the numerical implementation of
the time-stepping technique and also presented a number of numerical solutions. In all
these works, the temporal convolution integrals are evaluated analytically and the spatial
integrations are carried out numerically at each time step. Wang and Takemiya (1992)
also obtained, analytically, both spatial and temporal integration for scalar wave by the
Cagniard-De Hoop method.

Of all the aforementioned methods, temporal solution is assumed to be either the zeroth
or first order (i.e., constant or linear variation) and one-time-step piecewise continuity. In
this paper, the quadratic temporal solution (second order, two-time-step piecewise con­
tinuity) is developed for the first time. In this procedure, a quadratic temporal variation of
displacement and a constant temporal variation of traction are assumed. The temporal
integrations can be obtained analytically and the spatial integration is accomplished by
using Gaussian quadrature. The technique of uniform subsegmentation is also used for the
numerical integrations, since the kernels have singularities as well as jumps at the moving
wave front.

As for wave fronts in which singularities exist in the sense of the Cauchy Principal
Value, the finite part of the divergent integral are dodged in this paper by using rigid-body
translation.

Several numerical examples are used to demonstrate the efficiency, effectiveness and
numerical stability of the presented QC method. Some comparative studies are also made
between the QC method and the LC method. In these studies, the dimensionless time step
f3 is defined as

eMf3 =. _I-

I
(1)

where I is the element length, M is the time step used and C1 is the pressure wave velocity.
Banerjee (1994) has suggested that f3 should be between 0.5 and 0.75 in order to obtain an
accurate solution. Since a larger f3 means less calculation cost if I in eqn (1) is fixed, the
numerical investigation into f3 is also included in order to get an insight of numerical noise
and accuracy of the results with respect to different f3 values. 0.5 ~ f3 ~ 4.0 are used in the
numerical examples.

2. BEM INTEGRAL REPRESENTATION FORMULAE

2. I. Transient elastodynamics: governing equation
The governing equation of dynamic equilibrium for an isotropic elastic homogeneous

body is the so-called Navier's equation and can be written as

(Ie + Il)Uj"Jx, t) + IlUijJX, t) +pb;(x, t) = pii;(x, t) (2)

where U; is the component of displacement in the ith-direction, x is the position vector, tis
the time variable, hi is the component of the body force, I, and Il are the Lame constants
and p is the mass density of the material, and the inferior commas and overdot indicate
space derivatives and time derivative, respectively.

Considering a domain V bounded by a surface S, the displacement at a point ~ and at
time t can be obtained by the dynamic reciprocal work theorem in an integral form as

CiJ~)UJ~, t) = f {Gi'(~' r; x, t) * tJx, t) - Fii(~' r; x, t) * Uj(x, t)} dS(x)
s

I'

+p Jv Gii(~' r; x, t) *bix, t) dV(x)
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+PL{GiM, T; x, t)uJx, 0) + dil(~' T; x, t)uJx, O)} d Vex). (3)

In the above equation, ~ and x are source and receiver points, respectively, and Ui(X, 0)
and u,(x,O) are the initial displacement and velocity, respectively. Cu(~) is the well known
discontinuity term which is dependent on local geometry. * stands for the Reimann con­
volution integral (Eringen and Suhubi, 1975; Graff, 1975; Manolis and Beskos, 1988) and
is defined by eqns (B 1) and (B2) in Appendix B. The terms G,/~, T; X, t) and Fu(~, T; X, t)
are the fundamental solutions and represent, respectively, the displacement and traction at
the field point x at time t due to a unit force applied at source point;; at a preceding time
T. Equation (3) is valid for both bounded and unbounded regions which have been proved
by De Hoop (1958) (Manoli~ and Beskos, 1988).

2.2. Fundamental solution
The desired 2D kernel in eqn (3) can be written for completeness as follows:

(4)

where H is the Heaviside function, [' = t - T is the retarded time, r denotes the distance
Ix-~I, C j = J(I.+211)/p and C2 = J/JP. The details of the derivation ofeqn (4) can be
found in the text by Eringen and Suhubi (1975), and similar forms can also be found in the
works by Israil and Banerjee (1990a; 1991), Brebbia et al. (1984), Spyrakos and Beskos
(1986), Antes (1985) and Dominguez and Gallego (1992). The F" kernel (the traction
kernel) can also be obtained, using the strain-displacement relationship and the constitutive
equations. The Fit kernel is expressed as follows:

tThis term was erroneously typed by Israil and Banerjee (1990a; 1991; 1992) and Banerjee (1994) as

2C~t')-1 2A,
J("f)' -I (~)
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(5)

(6)

(7)

(8)

(9)

The above expressions for the 2D transient Fij-kernel are the most explicit and simplest
among those that are available so far. Also, the terms involving the delta function i5(c;t' - r),
representing the wave front contribution, are kept in the equation for completeness,
although after spatial integration they make no contribution and were omitted by Israil
and Banerjee (1990a).

3. NUMERICAL IMPLEMENTATION

For the numerical implementation of eqn (3), discretizations in both time and space
domains are required. The time integrations can be performed analytically while the spatial
integrations are treated numerically. The salient features of the temporal integrations and
methodology will be presented.

In order to integrate the convolutions analytically, the time span of interest is dis­
cretized into N steps with duration At for one time step. Define tn = nAt for n = 1, 2, ... ,
N. The quadratic temporal variation of functions is developed by the same procedure as used
in developing linear and constant temporal variations previously. All of the development of
temporal interpolation functions is described in the following section.

3.1. Temporal interpolation functions

3.1.1. Constant temporal interpolation functions. If constant variation is assumed in
one time step, then field variables can be expressed as:

(10)

wheref7(x) stands for tractions (t?) or displacements (u7) at time step nand Merer) and
MeD(r) are the constant temporal interpolation functions given by
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Fig. 1. Temporal various interpolation functions: (a) constant, (b) linear, (c) quadra1ic.

(II)

in which the subscripts CF and CB are referred to the forward and backward temporal
nodes, respectively, in a time step shown in Fig. I (a).

3.1.2. Linear temporal interpolation functions. The field variables are approximated by
using linear interpolation functions during one time step, and can be expressed as:

f(x, r) = MLf(r)f7(x) +MLB(r)f7- 1 (x) (12)

where MLF(r) and MLB(r) are linear temporal interpolation functions given by

r- tn - 1
Mu(r) = !1t ' (13)

in which the subscripts LFand LB are referred to the forward and backward linear temporal
nodes, respectively, in a time step shown in Fig. I(b).

3.1.3. Quadratic temporal interpolation functions. The field variables are assumed to
vary quadratically during two time steps, and can be expressed as:
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(14)

where MQAr), MQM(r) and MQs(r) are quadratic temporal interpolation functions shown
in Fig. I (c) and can be given by:

MQs(r) =_21(r-~2t'.'-2)2 -~2(r-~2tn-2)+1Ll Ll for t2n - 2 ~ r ~ t2,,,

(15)

(16)

(17)

in which the subscripts QF, QM and QB are referred to the forward, midpoint and backward
temporal nodes, respectively, in two time steps (2At) ; i.e., a two-time-step piecewise con­
tinuous function.

3.2. Temporal integration
In evaluating the convoluted Gij * Ii and Fij * Ui kernels, the computational effort can

be greatly reduced by making use of the time-translation property of the kernels. That is,
at each time step, only the effect of the current time interval is needed to be evaluated. The
traction convoluted kernels can be defined as follows:

[Fb~1i/n~2] == r2ndl

Fij(~, r; x, 2KAt)MQM (r) drJ(2n 2)~f

(18)

(19)

(20)

(21)

(22)

(23)

(24)

Similarly, the displacement convoluted kernels can also be defined.
All these time convoluted kernel integrations can be carried out analytically. These

procedures are similar to those of linear temporal variation described by Israil and Banerjee
(l990a), except that the temporal functions in this paper are more complicated.



2D elastodynamic transient analysis

Step by step proceeds ~

Fig. 2. Marching scheme used in the QC method.
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3.3. Step-by-step solution procedure
It is of interest to note that eqn (3) is an implicit time-domain formulation, since the

displacements at time t are being calculated by taking account of the history of surface
tractions and the history of displacements up to time t. As mentioned before, the temporal
variations of field variables (displacements and tractions) can be constant, linear and
quadratic. The eqn (3) with zero initial conditions and absence of the body force for a
certain temporal variation can be rewritten by using the discretization of time t = NAt as

i
Nilf

fC;i~)u;V (~) - ([Gi/Ax) - Fijuix)]) dS(x) dr
(N-m)t>.r S

(25)

in which m = 1 for constant and linear temporal variation, m = 2 for quadratic temporal
variation and RN represents the effect of past dynamic history on the current time node.
After introducing the boundary conditions, eqn (25) becomes a system of 2M equations
with 4M unknowns (M is the number of boundary nodes) for the first quadratic temporal
step. Therefore, Brebbia et al. (1984) introduced an extra temporal node tn - ll2 to double
the tOlal number of simultaneous equations involved in the first time step for 2D diffusion
formulation. However, coupled simultaneous solution is needed and it appears to be difficult
to solve. Therefore, only linear or constant variation is used in solving the field variables
in first time step. In other words, first time step is the linear or constant step. After first
time step, fully quadratic temporal solution procedure can then be established as shown in
Fig. 2. Now, the solution procedure will be dependent upon whether N is even or odd.

(i) If N is even, let N = 2K. The following Reimann convolution can be obtained with
more condensed manipulation in the following way:

i
' iNilrFij*u , = Fij(t-r)u,(x,r)dr = Fij(t-r)uj(x,r)dr
o 0

K {r2nill }"J F ( )(M 2n M 2n·- 1 +M 2n - ')) dn'::l 21n-1 )ill ij t - r QFU j + QMU j QBUj - r

K

" ([F2K 2n+ 2+ F2K~. 2n]U2n + [F2K-. 211+2]U2n I).
f..., QFII QB'J } QMII J

1/= 1

(26)

Using eqn (26) with the convoluted kernel functions described in eqns (18)-(24), eqn (25)
becomes:
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Cij(~)uY(~) = I f ([Gb~ij2n~2 +Gb~ij21]t~"(X) + [Gb~j/"+2]t~n-l (x)
1/= I S

(ii) If N is odd, let N = 2K+ I. Equation (25) similarly takes the form:

C ..():)U2K+I ():) = ~ f ([G2K_~~2n+2 + G2K:-.211]t211+ I (x) + [G2K-:.211+2]t.2n(x)
'I" I .. 1.... QhJ QBII J QMII I

//= 1 S

- [Fb7;j2n+2 +Fb~/"]U}n I I (x)- [Fb~ti/"-2]U}"(X)) dS(x)

f ([G 2K+! G2K ] I() [F2K+1 F 2K ] I( ))dS( )+ s U'il + QBil tl X - LFij + QBil UI X X . (28)

In the above two equations, [G~F.ln+2+G~B,J"] and [F~F.l1l+2+F~B,Jn]are the condensed
quadratic convoluted kernels and are defined as follows:

[Fb~ij211+2+Fb~ij211] == r211

,',1 FiJ~,r;x,2KL1t)MQF(r)dr
J(2/1 --- 2)~1

+f(211+2
1
,',1 Fij(~,r;x,2KL1t)MQB(r)dr. (29)

2"81

In addition, the condensed quadratic convoluted displacement kernel and the condensed
linear convoluted traction and displacement kernels can be similarly obtained.

It is worth noting that singularities exist in the various convoluted kernel functions
[FbFiJ+F~BiJ, [FL'ij+F~Bul, [FL'ij+F~Bij]' [G~Fij+F2Bij]' [GbFij+G~Bij] and [GL;j+G~Bij],
when the load point and the field point coincide (~= x). The singularities in
[GbFij+G~BiJ, [G~hl+G2'Bul and [GLFij+G~BiJ are in the form of Inr (weak singularity)
and the singularities in others are in the form of Ilr (strong singularity). One should also
note that only the first piecewise continuous function is a one time step function and the
other piecewise functions are two-time-step functions. The last integral form in eqn (28)
represents the first time step effect which includes parts of linear variation contribution
and parts of quadratic variation contribution. Moreover, the fully condensed quadratic
convoluted kernels of eqn (28) apparently equal that of eqn (27).

It should be recognized that the temporal variations of displacements and tractions
can be different. Two mixed methods (i.e., different temporal variations for displacement
and traction) are introduced as follows.

3.3.1. QC method solution procedure. The mixed solution procedure is developed to
combine different temporal displacement variations and traction variations. It is easier to
mix a constant variation of traction with a quadratic variation of displacement. In most of
the available analytical solutions of transient problems, the temporal variations of tractions
are constant. So, two different methods are introduced as follows. One uses constant
temporal variation of traction and quadratic temporal variation of displacement. This is
called the QC method in the paper. The other uses constant temporal variation of traction
and linear temporal variation of displacement. This is called the LC method in the paper.
Only the constant temporal variation of traction in one time step is currently developed.
The mixed variation procedure can similarly be obtained as quadratic variation procedure
described in the last section through simple manipulations. However, it is important to
discern constant variation of a linear step from constant variation of a quadratic step.

Hence, the constant convoluted displacement kernels with quadratic temporal step is
expressed in terms equivalent to constant convoluted displacement kernels with linear
temporal step which are shown in eqns (A I), (A2) and (A3) of Appendix A. And the



20 elastodynamic transient analysis 137

condensed quadratic convoluted traction kernels with quadratic temporal step are shown
in eqns (A4), (AS) and (A6) of Appendix A. In the above mentioned convoluted kernels,
the time-related terms are always non-negative because of the causality property of the
wave. Also, because of the time-translation property, the convoluted kernels need to be
evaluated only for n = 1 (Banerjee, 1994).

The QC method solution procedure can be similarly obtained by using eqns (27), (28)
and replacing linear variation of [Gf~t +Gb~d with constant variation of
[G2·~t'+G~~iJasfollows: .

(i) If N is even, let N = 2K.

C(j:)U2K(j:) = ~ i ([G 2K -: 211+1 +G2K-:2n]t2n(x)+[G2K~211+2+G2K-:2n+l]t211-I(x)
fl \:0 J ':, ~ ( h) ( BI}.1 (I'll CBI)}

11~ I S

(ii) If N is odd, let N = 2K+ 1.

K fC ..(j:)U2K+ I (j:) =" .([G 2K-:.. 211+ 1 + G 2K-:.. 211] t211 - 1(x) + [G2K-: 2n+ 2 + G2K-: 211+ I ]t211 (x)
IJ ':,) ~ ~ . (Flj CBII J CFI./ C81.1 J

n= 1 5;

f [G 2K+I G 2K ] I() [F2K+I F 2K ] I ))dS()+} CFij + CBij t, x - LFij + QBij U j (x X . (31 )

3.3.2. LC mixed method solution procedure. For the LC method, the solution procedure
can be expressed as follows:

Cij(~)u;Vm = £f([G~Fir I + G~Bi7Jtj'(X) - [FtFiP-' 1 +FtBii'Juj'(x)) dS(x) (32)
17= I S

where subscripts LF and LB are the forward and backward temporal nodes of linear time
step as depicted in Fig. Ib, respectively.

3.4. Spatial divergent integral
However, the convoluted Fij * uJ kernels contain the strong singular terms that cause

difficulty in numerical integration especially for a mesh with widely varying element lengths
(Israil and Banerjee, 1990b). But, after convoluted kernels are condensed as demonstrated
in eqn (28), those strong singularity terms cancel each other and result in well-behaved
functions for N > 2. And only for N = 1 (for linear temporal variation) and N = 2 (for
quadratic temporal variation) strong singularity of O(l!r) exists at wave fronts. Further­
more, the condensed kernels form in eqns (27) and (28) can save computer memory space
by merging two arrays into one array.

The divergent integral in the sense of Cauchy Principal Value (Chen and Zhou, 1992)
is evaluated in the following way (Israil and Banerjee, 1990b):

r F":n,,, dS = f F,tatic dS + f (F'."ItlS - F!.·tatiC) dS
I} [/ if '/ •

• s s s
(33)

The first integral on the right hand side of eqn (33) is divergent and its evaluation using the
technique of rigid body motions is well known. The second integral of eqn (33) is non­
singular and can be evaluated numerically without difficulty.
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4. BEHAVIOR OF TRANSIENT CONVOLUTED KERNELS AT A LARGE TIME STEP

The property of reducing the convoluted kernels of elastodynamics to the cor­
responding elastostatic kernels, when the time step is large, is very important for checking
the convoluted kernels. The mathematical proof of this property for quadratic and constant
temporal variation are given as follows.

From the following relationship

(34)

one can easily derive the following useful formula

(

CJ1t)as --r-» I, {
cosh-I (CI~t) cosh-I (C2~t)} InCc:.At) InCc~.~t)
----- + ~ +----

l d d d d

In(~) InG) jn(2,,";;""·;~(2,,"li 3-4, (1)
= -- +-- + + = In - +constant (35)

d d d d 2(l-v)d r

(36)

These formulae will be used for proving the property mentioned above for each convoluted
kernel in the following subsections. The transient condensed quadratic convoluted kernels
as shown in eqn (AS) at a large time step are studied first. For K = 1, the kernel
[F~Fij+F~BiJ can be written as

(37)

Substituting eqns (35)-(36) into eqn (37) and assuming ci~t!r ~ 00, the following can be
obtained:

= 2 f.1 .{- (~~")[(2)]+ (~)[ - (3)(2)] + (A~)[(2)]_ (~)[- (3)(2)]}
npl 2d 6d 2C2 6d

f.1 { (A I) (A 3) ( I I )}=-- - - + -- +A--·-
2npr cf d 2 d d



2D elastodynamic transient analysis

= Kelvin's 2D traction fundamental solution of elastostatics.

139

(38)

The same behavior can be proven for [FlFij+F~Bij] and [FlFij+F~Bi,]'

Similarly, the behavior of the middle point convoluted kernel [FbMij] can be reduced
from eqn (A6).

Therefore, the following result can be concluded as e/1t/r-> 00.

. 2 Ii {(2A
2
)[ 4 J (A

2
)hm [F \1] = ~- + ~ - ~- + - [2]

cit>.l!r~x Q, IJ 2npr 3d (2)(2) 3d

( 2A
2
)[ 4 J (A

2
) }- ~ - ~- - - [2] = o.

3d (2)(2) 3d
(40)

For K> 1, one can find in eqn (A5) of Appendix A that all of sums of these terms
having same coefficient are zeroes as c/1t/r-> 00, i.e.,

- (!I,)[(2K-I)(2K)-6(2K-2)-(2K-3)(2K-4)] = 0,
2el

+ (A.:.')[(2K~ 1)(2K)-6(2K-2)-(2K-3)(2K-4)] = 0
2c;

and

+ (A~)[ _ (5K - 2)(210 + 12(2K -2) + (5K- 8)(2K-4)]
6c;

(
A 2

)[ 2( (1) ) 2( (1) )- 3~? (K-I)(2K) (210(2) -6(2K-2) (2K-2)(2)

7 ( (1) )J- (K-1)(2K-4)- (2K-4)(2) = O.

(41 )

(42)

(43)

This means that lim(cit>.'!r)~JC [Fb~i;+Fb~i/] = 0 for K> 1. Only K = I and, similarly, for
N = 1, have strong singularities. However, as c/},.t/r -> 00, the convoluted kernels are exactly
reduced to the corresponding elastostatic kernels. Similarly, through a limiting process, the
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Fig. 3. Rectangular bar subjected to prescribed loading: (a) geometry and BCs, (b) triangular
loading, (c) ramp-step loading.

same conclusion of reduction to elastostatic kernels can be brought for the case of
convoluted displacement kernels.

5. NUMERICAL ANALYSIS

The following examples are presented in order to demonstrate the capability of the
developed time-convoluted BEM algorithm. The geometry is modelled with continuous
isoparametric quadratic elements. In the model, the components of surface traction (or
reaction) can be different on both elements attached to the same corner node. First, to
show the convergence of the QC method, a rectangular bar subject to a triangular load is
considered by using different meshes and different time step sizes. Then a different rec­
tangular bar subject to ramp-step load is analyzed again for verification.

For comparisons of numerical results, the same integration scheme is used for both
the QC method and the LC method. Since the spatial variations of the convoluted kernels
are very complex functions which are logarithmic functions and square root functions, a
uniform subsegmentation technique is adopted in the evaluation of these spatial integrals.
Each boundary element is divided into 12 and 8 subsegments in the integration of singular
and regular kernels, respectively. Besides, 32 Gaussian points on each subsegment are
used for a singular integration and 10 Gaussian points on each subsegment for a regular
integration.

5.1. Bar subjected to triangular load
A rectangular bar (see Fig. 3a), whose length L is twice its width W, is fixed at its left

end with traction free on its top and bottom sides. The Poisson's ratio is assumed to be
zero. The right end side of bar is uniformly subjected to a triangular and tensile load (see
Fig. 3) which increases from zero at time t = 0 to Pat t = Tr = Llc] and then decreases to
zero at t = 2Tr . Thus, the solution is pure ID solution and the primary wave front just
reaches the fixed end at time t = Tr and bounces back to the right end at t = 2Tr • The
material constants are E = 7.8, v = 0 and C j = 100.

To show the convergence of the QC method, three different discretized meshes (see
Fig. 4) are chosen for the same time-step size f3 = 0.5. Among the three meshes, one is
course mesh with 12 nodes and 6 quadratic elements, another is moderate mesh with 32
nodes and 16 quadratic elements, and the other is fine mesh with 48 nodes and 24 quadratic
elements. The axial displacement (u) at point C and the horizontal reaction (R) at point A
(see Fig. 3a) is investigated. The numerical results by the QC method are compared with
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Fig. 4. Various discretization of the bar (LlW = 2): (a) 12 nodes and 6 quadratic elements, (b) 32
nodes and 16 quadratic elements, (c) 48 nodes and 24 quadratic elements.

that of analytical solution for 13 = 0.5 in Figs 5 and 6. From these figures, one can see that
all three types of mesh give very good results and that the finer mesh gives the better results.

Furthermore, in order to understand how time-step size affects the accuracy of the QC
method, four different time-step sizes (13 = 0.5, I, 2 and 4) are chosen in the solution
procedure. The results with the four time-step sizes by the QC method using the mesh of
32 nodes are also plotted together in Figs 5 and 6. Apparently, the smaller 13 is used, the
better results are obtained.

For comparison of accuracy between the QC method and the LC method, the mesh
of 32 nodes is again used for analysis. From Figs 7 and 8, at the beginning (e1 t/L < 4),
both the QC method and the LC method agree very well with analytical solution. As time
increases, the difference between the numerical solution and analytical solution starts to be
observed and as time increases further, the differences become bigger. However, the QC
method is much more accurate than the LC method. Especially, the peak value of the
traction by the LC method reduce very fast as time increases.

Note that this reduction of peak values of displacements and tractions also occurs in
the QC method. This erroneous damping effect is generally regarded as numerical damping.
It may be caused by use of a large time step which can reduce the elastodynamic kernels
into the elastostatic kernels proven in Section 4. This error can be reduced by using a
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smaller time step size. However, a smaller time step size means more time steps and more
accumulation of numerical errors. So, too small time step size sometimes should be avoided.

5,2. A bar subjected to un!form ramp-step load
The same rectangular bar, except length-to-width ratio L/ W = 10, subjected to a ramp­

step load as shown in Fig. 3 is used in the investigation of the presented method (QC
method). The boundary conditions and its material constants are the same as those in the
previous example. The boundary is discretized into twelve quadratic boundary elements as
shown in Fig. 9.

Under the ramp-step load, the magnitude of the applied load starts linearly increasing
from zero and then is kept constant after time t = T r = 0.8L/c).

Again, four different time-step sizes (2/3, 1.0, 4/3 and 2) are used in the analyses. It
means that when t = Tn the wave front just arrives at the point 0.2L away from the fixed
end.

The displacement at point C and the reaction at point A is still investigated. The
numerical solutions by the QC method and the LC method are plotted together and
compared to the analytical solution in Figs 10-16. Again, the numerical damping is observed
in the figures. From these figures, the QC method is still much better and more accurate
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16

than the LC method depicted in Figs 10-16. Particularly, when f3 = 4/3 or 2, both the
displacement and traction at corner points (point A and C) by the LC method go divergent
(see Figs 14-16). Basically, it agrees with the fact concluded by Banerjee (1994) that the
value of f3 should be 0.5·~0. 75 for best results and shouldn't be greater than 1.0.
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6. CONCLUSION

After some extensive numerical studies of the presented BEM scheme, the following
conclusions can be drawn.

(I) The presented QC method can be easily programmed. A computer program for
elastostatics can be easily modified to the computer program for elastodynamic problems
by simply changing kernel functions and sequential solution procedure of eqns (30) and
(31 ).

(2) The QC method has been compared with the LC method in several example
problems under the same integration scheme. Numerical studies reveal that the QC method
is more accurate and stable.

(3) Compared to the LC method, a wider range of fJ values (0.5-2.0) can be used in
the QC method. Using the same fJ, the CPU time in computer by the QC method is less
than 10 percent more while compared to the CPU time by the LC method. This indicates
that if a certain level of accuracy is wanted to be maintained, the QC method is more
economical than the LC method, since a larger fJ value can be selected for the QC method.
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APPENDIX A

Condensed conl'olu/ed kernels of /he QC me/hod
These six newly derived forms of the condensed temporal convolution kernels are presented as follows:

A.I. Equil'alenl forward-point 's condensed conSlant conl'olu/ed displacement kernels of quadratic lime step
[G::Cfi / +G::c"B7,]for N is e('en (N = 2K)
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